Abstract

Large-scale detectors consisting of a liquid scintillator target surrounded by an array of photo-multiplier tubes (PMTs) are widely used in the modern neutrino experiments: Borexino, KamLAND, Daya Bay, Double Chooz, RENO, and the upcoming JUNO with its satellite detector TAO. Such apparatuses are able to measure neutrino energy which can be derived from the amount of light and its spatial and temporal distribution over PMT channels. However, achieving a fine energy resolution in large-scale detectors is challenging. In this work, we present machine learning methods for energy reconstruction in the JUNO detector, the most advanced of its type. We focus on positron events in the energy range of 0–10 MeV which corresponds to the main signal in JUNO – neutrinos originated from nuclear reactor cores and detected via the inverse beta decay channel. We consider the following models: Boosted Decision Trees and Fully Connected Deep Neural Network, trained on aggregated features, calculated using the information collected by PMTs. We describe the details of our feature engineering procedure and show that machine learning models can provide the energy resolution sigma = 3% at 1 MeV using subsets of engineered features. The dataset for model training and testing is generated by the Monte Carlo method with the official JUNO software.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.