Abstract

This paper presents a two-stage stochastic programming model applied to energy rationalization in urban networks. The proposed model encompasses decisions regarding collection, transfer and storage of water, while minimizing the electricity costs associated to the pumping operations. To cope with the uncertainty nature of water-demands, we use the scenario-based approach within the two-stage stochastic paradigm. In order to mitigate both the variability of the recourse decisions and the infeasible solutions in the presence of multiple scenarios, we also analyze risk averse and robust policies. Numerical results show that it is possible to improve energy consumption by reducing water collection in critical periods, as well as by carrying out optimal levels of water in reservoirs before critical periods. Moreover, the analysis of EVPI and VSS evidence the importance of using the stochastic model over simpler expected approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.