Abstract

The mechanism of energy quantization is studied for classical dynamics on a highly anharmonic potential, ranging from integrable, mixed, and chaotic motions. The quantum eigenstates (standing waves) are created by the phase factors (the action integrals and the Maslov index) irrespective of the integrability, when the amplitude factors are relatively slowly varying. Indeed we show numerically that the time Fourier transform of an approximate semiclassical correlation function in which the amplitude factors are totally removed reproduces the spectral positions (energy eigenvalues) accurately in chaotic regime. Quantization with the phase information alone brings about dramatic simplification to molecular science, since the amplitude factors in the lowest order semiclassical approximation diverge exponentially in a chaotic domain.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call