Abstract
We consider nonlinear wave equations, first order in time, of a specific form. In the absence of dissipation, these equations are given by a Poisson system, with a Hamiltonian that is the integral of some density. The functional I, defined to be the integral of the square of the waveform, is a constant of motion of the unperturbed system. It will be shown that Z, the center of gravity of this density, is canonically conjugate to I and can be used as a measure to locate the position of the waveform. By introducing new coordinates based on Z, we get expressions for the centrovelocity, · Z , and the decay of I, which compare to the ones of part I, in both the conservative and the dissipative case. With the derived expressions, we investigate the decay of solitary waves of the Korteweg-de Vries equation, when different kinds of dissipation are added.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.