Abstract

The balance of body energy within and across lactations can have health and fertility consequences for the dairy cow. This study aimed to create a large calibration data set of dairy cow body energy traits across the cow's productive life, with concurrent milk mid-infrared (MIR) spectral data, to generate a prediction tool for use in commercial dairy herds. Detailed phenotypic data from 1,101 Holstein Friesian cows from the Langhill research herd (SRUC, Scotland) were used to generate energy balance (EB) and effective energy intake (EI), both in megajoules per day. Pretreatment of spectral data involved standardization to account for drift over time and machine. Body energy estimates were aligned with their spectral data to generate a prediction of these traits based on milk MIR spectroscopy. After data edits, partial least squares analysis generated prediction equations with a coefficient of determination from split sample 10-fold cross validation of 0.77 and 0.75 for EB and EI, respectively. These prediction equations were applied to national milk MIR spectra on over 11 million animal test dates (January 2013 to December 2016) from 4,453 farms. The predictions generated from these were subject to phenotypic analyses with a fixed regression model highlighting differences between the main dairy breeds in terms of energy traits. Genetic analyses generated heritability estimates for EB and EI ranging from 0.12 to 0.17 and 0.13 to 0.15, respectively. This study shows that MIR-based predictions from routinely collected national data can be used to generate predictions of dairy cow energy turnover profiles for both animal management and genetic improvement of such difficult and expensive-to-record traits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call