Abstract

Gyrocenter dynamics of charged particles plays a fundamental and important role in plasma physics, which requires accuracy and conservation in a long-time simulation. Variational symplectic algorithms and canonicalized symplectic algorithms have been developed for gyrocenter dynamics. However, variational symplectic methods are always unstable, and canonicalized symplectic methods need coordinates transformation case by case, which is usually difficult to find. Based on the fact that the Hamiltonian function describing the energy of the system is invariant, we develop energy-preserving algorithms for gyrocenter dynamics systematically using the discrete gradient method. The given integrators have significant advantages in preserving energy and efficiency over long-time simulations, compared with non-symplectic methods and canonicalized symplectic algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.