Abstract

Energy prediction plays a significant role in energy-harvesting wireless sensors (EHWS), as it helps wireless sensors regulate their duty cycles, achieve energy neutrality, and extend their lifespan. To explore and analyze advanced technologies and methods regarding energy prediction for EHWS, this study identifies future research directions and addresses the challenges faced based on the current research status, assisting with future literature research. This scholarly inquiry delineates future research prospects and addresses prevailing challenges within the context of the extant research landscape, thereby facilitating prospective scholarly endeavors. This study employed the systematic mapping study (SMS) approach to screen and further investigate the relevant literature. After searching and screening for papers from the ACM, IEEE Xplore, and Web of Science (WOS) databases from January 2007 to December 2022, 98 papers met the requirements of this study. Subsequently, the SMS was conducted for five research questions. The results showed that the solution proposal type category had the largest proportion among all research types, accounting for 58% of the total number, indicating that the research focusing on this field is placed on improving the existing methods or proposing new ones. Additionally, based on the SMS analysis, this study provides a systematic review of the technical utilization and improvement approaches, as well as the strengths and limitations of the selected prediction methods. Furthermore, by considering the current research landscape, this paper identifies the existing challenges and suggests future research directions, thereby offering valuable insights to researchers for making informed decisions regarding their chosen paths. The significance of this study lies in its contribution to driving advancements in the field of energy-harvesting wireless sensor networks. The importance of this study is underscored by its contribution to advancing the domain of energy-harvesting wireless sensor networks, thereby serving as a touchstone for forthcoming researchers in this specialized field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.