Abstract

The concept of transport energy is the most transparent theoretical approach to describe hopping transport in disordered systems with steeply energy dependent density of states (DOS), in particular in organic semiconductors with Gaussian DOS. This concept allows one to treat hopping transport in the framework of a simple multiple-trapping model, replacing the mobility edge by a particular energy level called the transport energy. However, there is no consensus among researchers on the position of this transport level. In this article, we suggest a numerical procedure to find out the energy level most significantly contributing to charge transport in organic semiconductors. The procedure is based on studying the effects of DOS modifications on the charge carrier mobility in straightforward computer simulations. We also show why the most frequently visited energy, computed in several numerical studies to determine the transport energy, is not representative for charge transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call