Abstract

Today, the building sector has a large share in global energy consumption. The building stock, which has increased with the increasing population, contributes more to this consumption day by day. School buildings, which constitute an important part of public buildings, are among the most used building types in the daily cycle and also have a high energy demand for heating, cooling and electricity loads. In Turkey, the implementation of the same type of school projects in different climate regions without considering the context and climatic conditions increases the amount of energy consumption. This study provides a framework for reducing energy loads in school buildings using passive design strategies. Located in two different climatic regions of Turkey, in Istanbul and Ankara, a primary school building is taken into consideration for comparison of type projects in the context of energy performance and single-objective optimization process to minimize energy use intensity (EUI). As a result of the optimization processes carried out depending on the parameters related to the building envelope, the energy performance for the Istanbul climate is improved by 5.05%, while this rate is 4.09% for the Ankara climate. The best solution individual parameters of both climate types have very close values to each other. It is thought that more efficient results can be obtained with the multi-objective optimization processes of the studies to be carried out to evaluate the type school projects on the basis of different climates.

Highlights

  • Today with the rapid population growth, due to the changing needs and consumption habits, irreversible damages are given to the nature

  • Looking at the optimization results for Ankara, it is seen that the energy use intensity (EUI) values vary between 121.06 kWh/m2 and 131.15 kWh/m2 and the energy performance of the individual with the best energy performance is increased by 4.09% when compared with the base case

  • Within the scope of this study, in order to draw a framework for evaluating the energy performance of buildings that have a high share in global energy consumption, at Turkey’s two different climatic zones, Istanbul and Ankara, on a type primary school concept project, a single-objective optimization process is carried out to minimize the energy use intensity

Read more

Summary

Introduction

Today with the rapid population growth, due to the changing needs and consumption habits, irreversible damages are given to the nature. The need for ever-increasing energy, especially in cities, does not help to reduce the consequences, such as global warming, but is adversely affecting each year. Research shows that the energy demand of buildings increased by 7% from 2010 to 2018 (IEA, 2019). For all these reasons, the building sector is seeking alternative designs in order to consume less energy and to gain maximum benefit from sustainable resources. It is aimed to contribute to the solution of problems with energy-efficient and performance-based designs that reduce the energy consumed by buildings throughout their life cycle and cause minimum damage to the environment and human health

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call