Abstract

Double-skin façade (DSF) is a passive design strategy that enhances building energy performance and improves indoor thermal comfort. In addition, DSF has been proposed as a hybrid façade that uses a cavity to preheat fresh air supplied to an air-handling unit (AHU) to reduce energy consumption for heating. However, to the authors' knowledge, there is no study about the design of DSF tailored for the hybrid system application yet. Therefore, this study focuses on the usability of DSF as a hybrid system and evaluates the performance. First, parametric analysis of the hybrid solar heating façade geometry and thermal properties of glazing and absorber materials was performed to identify the most influencing design parameters. Second, the multivariate linear regression (MLR) model was developed to predict the performance of all parameters comprehensively affecting the hybrid solar heating façade. Finally, the performance of various design alternatives for hybrid solar heating façade that provide the minimum fresh air supply was evaluated through case studies. The analysis results confirmed that the hybrid solar heating façade can reduce the heating energy due to the preheating effect by up to 38%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.