Abstract

It is of great significance to predict the energy performance of centrifugal pumps for the improvement of the pump design. However, the complex internal flow always affects the performance prediction of centrifugal pumps, particularly under low-flow operating conditions. Relying on the data-fitting method, a multi-condition performance prediction method for centrifugal pumps is proposed, where the performance relationship is incorporated into the particle swarm optimization algorithm, and the prediction model is optimized by automatically meeting the performance constraints. Compared with the experimental results, the performance under multiple operating conditions is well predicted by introducing performance constraints with the mean absolute relative error (MARE) for the head, power and efficiency of 0.85%, 1.53%,1.15%, respectively. By comparing the extreme gradient boosting and support vector regression models, the support vector regression is more suitable for the prediction of performance curves. Finally, by introducing performance constraints, the proposed model demonstrates a dramatic decrease in the head, power and efficiency of MARE by 98.64%, 82.06%, and 85.33%, respectively, when compared with the BP neural network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.