Abstract

Scintillating bolometers are particle detectors with a high particle discrimination power with many applications in nuclear and particle physics. This discrimination power is based on the different scintillation yield for different particles, and is strongly dependent on the target used. At the very low temperatures required for the operation of the bolometers, very few data about the scintillation yields are available. In this paper we present estimates of absolute light yields and energy partition among heat, light and trapping channels in Sapphire (Al 2O 3) and BGO (Bi 4Ge 3O 12) scintillating bolometers operated at 20 mK. The estimate relies on the observed negative correlation between the light and heat signals produced by γ-ray absorption in scintillating bolometers and on the study of the X-ray stimulated luminescence properties of BGO at temperatures down to 77 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.