Abstract
Carrier transport across the semiconductor space-charge region of a silicon triangular barrier diode was investigated by a Monte Carlo simulation. Oscillations of the electron mean kinetic energy are observed as a function of position along the uphill slope of the barrier under bias. At a given point on the uphill slope, the energy distribution function shows an oscillatory behavior, with a periodicity corresponding to the optical phonon energy. These oscillations are shown to be due to the nonequilibrium dynamics of the electron interaction with optical phonons in the situation when other inelastic electron scattering processes are negligible. The energy oscillations are superimposed on a smooth cooling of the distribution in the transport toward the top of the barrier, as current flows through the system. A comparison with the thermionic theory quantifies the importance of nonequilibrium effects in short-range electronic transport.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.