Abstract

Pipelined computing is a promising paradigm for embedded system design. Designing the scheduling policy for a pipelined system is however more involved. In this paper, we study the problem of the energy minimization for coarse-grained pipelined systems under hard real-time constraints and propose a method based on an inverse use of the pay-burst-only-once principle. We formulate the problem by means of the resource demands of individual pipeline stages and solve it by quadratic programming. Our approach is scalable w.r.t the number of the pipeline stages. Simulation results using real-life applications as well as commercialized processors are presented to demonstrate the effectiveness of our method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.