Abstract
In this paper, two solar Photovoltaic (PV) systems are considered; one in the department with capacity of 100 kW and the other in the hostel with capacity of 200 kW. Each one has battery and load. The capital cost and energy savings by conventional methods are compared and it is proved that the energy dependency from grid is reduced in solar micro-grid element, operating in distributed environment. In the smart grid frame work, the grid energy consumption is further reduced by optimal scheduling of the battery, using Reinforcement Learning. Individual unit optimization is done by a model free reinforcement learning method, called Q-Learning and it is compared with distributed operations of solar micro-grid using a Multi Agent Reinforcement Learning method, called Joint Q-Learning. The energy planning is designed according to the prediction of solar PV energy production and observed load pattern of department and the hostel. A simulation model was developed using Python programming.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.