Abstract

Energy optimization and analysis of complex chemical processes play a significant role in the sustainable development procedure. In order to deal with the high-dimensional and noise data in complex chemical processes, we present an energy optimization and analysis method based on extreme learning machine integrating the index decomposition analysis. First, index decomposition analysis has been used to decompose the high-dimensional data to three energy performance indexes of the activity effect, the structure effect and the intensity. And then, those indexes and the production/conductivity of the chemical process are defined as inputs and outputs of the extreme learning machine respectively to build energy optimization and analysis model. Finally, the proposed method has been applied to optimizing and analyzing energy status of the ethylene system and the purified terephthalic acid solvent system in complex chemical processes. The experiment results show that the proposed method has the characteristics of fast learning, stable network outputs and high model accuracy in handling with the high-dimensional data. Moreover, it can optimize energy of chemical processes and guide the production operation. In our experiment, the production of ethylene plants can be increased by 5.33%, and the conductivity of purified terephthalic acid plants can be reduced by 0.046%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call