Abstract

Solar noise storms (NS) are analyzed by an algorithm which separates a random signal into pulses. The burst duration distribution is shown to be inversely proportional to the squared duration of bursts. The distribution ordinates are proportional to the average pulse repetition frequency, and the distribution maximum corresponds to the limiting pulse duration equal to 0.4–0.6 s. The aggregate lifetime of all short-lasting bursts is approximately equal to the aggregate lifetime of bursts of any other duration. The energy of short-lasting bursts with a duration of 0.2–0.4 s is five times smaller than the energy of longer bursts, and it constitutes only 2–5 percent of the energy of the NS burst component. The power of bursts increases as their duration changes from 0.2 to 1.2 s until it reaches some limit at a duration of 1.2–1.4 s. The power of longer bursts remains almost unchanged up to the end of the investigated duration interval (up to durations of 300 s). Solar burst chains can be some superposition of short-lasting bursts on one longer burst. Thus, the burst energy measurements do not support the widespread point of view that solar noise storms consist of short-lasting type I bursts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call