Abstract
The energy of a graph G is defined as the sum of the absolute values of the eigenvalues of its adjacency matrix. The graph energy has close correlation with the total pi-electron energy of molecules calculated with Huckel molecular orbital method in chemistry. A graph whose energy is greater than the energy of complete graph of same order is called hyperenergetic graph. A non-complete graph having energy equal to the energy of complete graph is called borderenergetic graph. Two non-cospectral graphs are said to be equienergetic graphs if they have same energy. In this chapter, the results on graph energy are reported. Various bounds for graph energy and its characterization are summarized. Construction of hyperenergetic, borderenergetic, and equienergetic graphs are reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.