Abstract
In this paper, we give a new lower bound for the eigenvalues of the Dirac operator on a compact spin manifold. This estimate is motivated by the fact that in its limiting case a skew-symmetric tensor (see Eq. (1.6)) appears that can be identified geometrically with the O’Neill tensor of a Riemannian flow, carrying a transversal parallel spinor. The Heisenberg group which is a fibration over the torus is an example of this case. Sasakian manifolds are also considered to be particular examples of Riemannian flows. Finally, we characterize the 3-dimensional case by a solution of the Dirac equation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.