Abstract

Recent work in the literature had evaluated the energy-momentum tensor of a Casimir apparatus in a weak gravitational field, for an electromagnetic field subject to perfect conductor boundary conditions on parallel plates. The Casimir apparatus was then predicted to experience a tiny push in the upward direction, and the regularized energy-momentum tensor was evaluated to first order in the gravitational acceleration. This analysis made it desirable to assess what happens in a simpler case. For this purpose, the present paper studies a free, real massless scalar field subject to homogeneous Dirichlet conditions on the parallel plates. Working again to first order in the constant gravity acceleration, the resulting regularized and renormalized energy-momentum tensor is found to be covariantly conserved, while the trace anomaly vanishes if the massless scalar field is conformally coupled to gravity. Conformal coupling also ensures a finite Casimir energy and finite values of the pressure upon parallel plates. (Less)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.