Abstract

The paper describes an energy–momentum conserving time stepping algorithm for nonlinear dynamic analysis of laminated shell type structures undergoing finite rotations and large overall motion. The shell model is based on a third order shear deformation theory and falls within the class of geometrically exact shell theories. This algorithm is based on a general methodology for the design of exact energy-momentum conserving algorithms proposed recently by Simo and Tarnow. It is second-order accurate, unconditionally stable, and preserves exactly, by design, the fundamental constants of the shell motion such as the total linear momentum, the total angular momentum, and the total energy in case the system is Hamiltonian. The finite element discretization of the present shell model is closely related to a recent work by the authors dealing with the static case. Particular attention is devoted to the consistent linearization of the weak form of the fully discretized initial boundary value problem in order to achieve quadratic rate of convergence typical of the Newton–Raphson solution procedure. A range of numerical examples is presented to demonstrate the performance of the proposed formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.