Abstract
Two particle correlations are used to extract information about the characteristic size of the system in proton-proton and heavy ion collisions. The size of the system can be extracted from the Bose-Einstein quantum mechanical effect for identical particles. However there are also long range correlations that shift the baseline of the correlation function from the expected flat behavior. A possible source of these correlations is the conservation of energy and momentum, especially for small systems, where the energy available for particle production is limited. A new technique, first used by the STAR collaboration, of quantifying these long range correlations using energy-momentum conservation considerations is presented in this talk. Using Monte Carlo simulations of proton-proton collisions at 900 GeV, it is shown that the baseline of the two particle correlation function can be described using this technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.