Abstract

Abstract Developing a sustainable energy model is imperative considering the current trend towards decarbonizing sectors worldwide. For this purpose, Venezuela was used as a reference to propose an energy model focused on taking advantage of plant photosynthesis through microbial–vegetable fuel cells together with an agro-photovoltaic system to enhance energy and agricultural production. Energy production from the cells was estimated using an average power density of 264 mW/m2 over 4% of the areas destined for crops in the entire Venezuelan region, obtaining an annual production of 19.889 GWh/year. In contrast, the energy production of the agro-photovoltaic system was modelled using PVsyst software on 50% of the area used for the cells distributed throughout the states of Anzoátegui, Guárico, Monagas and Portuguesa according to their meteorological conditions, solar irradiation and agricultural activity, resulting in 3 703 417 GWh/year. The resulting whole system proved to be able to cover >10 times the installed electricity generation capacity at a national level and, together with the tremendous scalability of the microbial fuel cells, it shows that Venezuela has a high potential for the production and distribution of clean energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call