Abstract

The energy of any [Formula: see text] representative of a homotopy class of maps from a compact and connected Riemannian manifold with nonnegative Ricci curvature into a complete Riemannian manifold with no conjugate points is bounded below by a constant determined by the asymptotic geometry of the target, with equality if and only if the original map is totally geodesic. This conclusion also holds under the weaker assumption that the domain is finitely covered by a diffeomorphic product, and its universal covering space splits isometrically as a product with a flat factor, in a commutative diagram that follows from the Cheeger–Gromoll splitting theorem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.