Abstract

Energy minimization in sensor nodes is the problem in wireless sensor networks (WSNs). The most widely accepted method to preserve energy of sensor nodes is clustering. In cluster based networks, energy consumption is higher in the nodes which are closer to the sink as compared to the nodes which are located farther away from base station (BS). Various unequal clustering algorithms were proposed in the past to correct this issue. The major drawbacks in the findings are that the nodes, which join a specific cluster head, cause overburdening of the cluster head. In this paper, we present an algorithm namely energy efficient unequal sector clustering (EUSC) using multi-sector and unequal clustering approaches which improve the network’s energy efficiency. EUSC divides the network into multiple sectors based on nodes distances from BS. Selection of cluster heads in each sector is based on nodes distances to BS, residual energy and neighbor nodes proximities in that sector. Selection of a relay cluster head for data transmission is also based on residual energy, nodes distances to BS and queue length of nodes. In this paper, we have carried out some theoretical analysis of the nodes energy consumption in each sector and derived an expression for optimal number of clusters in each sector to minimize nodes energy consumption. Various simulations were carried out with MATLAB package to differentiate the competency of the proposed EUSC algorithm with that of the existing protocols ECHA and ‘PSO based protocol’. Simulation results in different network scenarios indicate that EUSC has given much improved performance than ECHA and ‘PSO based protocol’ in terms of number of clusters formed during each round, network lifetime and energy efficiency.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call