Abstract
With the rapid development of the internet of things (IoT) era, IoT devices may face limitations in battery capacity and computational capability. Simultaneous wireless information and power transfer (SWIPT) and mobile edge computing (MEC) have emerged as promising technologies to address these challenges. Due to wireless channel fading and susceptibility to obstacles, this paper introduces intelligent reflecting surfaces (IRS) to enhance the spectral and energy efficiency of wireless networks. We propose a system model for IRS-assisted uplink offloading computation, downlink offloading computation results, and simultaneous energy transfer. Considering constraints such as IRS phase shifts, latency, energy harvesting, and offloading transmit power, we jointly optimize the CPU frequency of IoT devices, offloading transmit power, local computation workload, power splitting (PS) ratio, and IRS phase shifts. This establishes a multi-variate coupled nonlinear problem aimed at minimizing IoT devices energy consumption. We design an effective alternating optimization (AO) iterative algorithm based on block coordinate descent, and utilize closed-form solutions, Dinkelbach-based Lagrange dual method, and semidefinite relaxation (SDR) method to minimize IoT devices energy consumption. Simulation results demonstrate that the proposed scheme achieves lower energy consumption compared to other resource allocation strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.