Abstract

This paper employs the weighted energy method to derive estimates for the dynamic behavior of solutions to boundary and initial boundary value problems with nonhomogeneous boundary conditions. In particular, the method is applied to the heat and Laplace equations in a bounded or unbounded region. Extensions to related equations are also studied. Similar estimates but for the spatial behavior is obtained for the heat equation and the backward in time heat equation. Results for blow-up in finite time of solutions to certain nonlinear equations are generalized to include nonhomogeneous boundary conditions, while solutions that vanish on part of the boundary are briefly discussed in the final section.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.