Abstract

With the energy method in the form of Ritz-Timoshenko solved the stability problem for a polymer rod under axial compression for the clamping-free edge option. The proposed form of loss of stability is chosen as a sum of functions with indeterminate coefficients. The shape functions for various fastenings and the represented fastening of the rod in particular are considered. The result is obtained numerically using the MatLab complex. A study was made of the long critical loads. It is shown that if the compressive force does not exceed the long-term critical one, then stability loss does not occur.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.