Abstract

ObjectivesTo explore the pathogenesis of rheumatoid arthritis (RA), the different metabolites were screened in synovial fluid by metabolomics.MethodsSynovial fluid from 25 RA patients and 10 normal subjects were analyzed by GC/TOF MS analysis so as to give a broad overview of synovial fluid metabolites. The metabolic profiles of RA patients and normal subjects were compared using multivariate statistical analysis. Different proteins were verified by qPCR and western blot. Different metabolites were verified by colorimetric assay kit in 25 inactive RA patients, 25 active RA patients and 20 normal subjects. The influence of hypoxia-inducible factor (HIF)-1α pathway on catabolism was detected by HIF-1α knockdown.ResultsA subset of 58 metabolites was identified, in which the concentrations of 7 metabolites related to energy metabolism were significantly different as shown by importance in the projection (VIP) (VIP≥1) and Student’s t-test (p<0.05). In the 7 metabolites, the concentration of glucose was decreased, and the concentration of lactic acid was increased in the synovial fluid of RA patients than normal subjects verified by colorimetric assay Kit. Receiver operator characteristic (ROC) analysis shows that the concentration of glucose and lactic acid in synovial fluid could be used as dependable biomarkers for the diagnosis of active RA, provided an AUC of 0.906 and 0.922. Sensitivity and specificity, which were determined by cut-off points, reached 84% and 96% in sensitivity and 95% and 85% in specificity, respectively. The verification of different proteins identified in our previous proteomic study shows that the enzymes of anaerobic catabolism were up-regulated (PFKP and LDHA), and the enzymes of aerobic oxidation and fatty acid oxidation were down-regulated (CS, DLST, PGD, ACSL4, ACADVL and HADHA) in RA patients. The expression of HIF-1α and the enzymes of aerobic oxidation and fatty acid oxidation were decreased and the enzymes of anaerobic catabolism were increased in FLS cells after HIF-1α knockdown.ConclusionIt was found that enhanced anaerobic catabolism and reduced aerobic oxidation regulated by HIF pathway are newly recognized factors contributing to the progression of RA, and low glucose and high lactic acid concentration in synovial fluid may be the potential biomarker of RA.

Highlights

  • Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and hyperplasia that induce autoantibody production and cartilage and bone destruction [1]

  • In the 7 metabolites, the concentration of glucose was decreased, and the concentration of lactic acid was increased in the synovial fluid of RA patients than normal subjects verified by colorimetric assay Kit

  • Receiver operator characteristic (ROC) analysis shows that the concentration of glucose and lactic acid in synovial fluid could be used as dependable biomarkers for the diagnosis of active RA, provided an AUC of 0.906 and 0.922

Read more

Summary

Introduction

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by synovial inflammation and hyperplasia that induce autoantibody production and cartilage and bone destruction [1]. Activated fibroblast-like synoviocytes (FLS) in the lining layer of the synovial membrane are the dominant cell type involved in “pannus” formation and play a key role in joint destruction [2,3,4]. There are studies reporting that activation of the immune system requires a lot of energy in chronic inflammatory diseases including RA. Energy metabolism provides energy for inflammatory diseases and controls immune responses via metabolic signals [5]. Energy metabolism may play an important role in the pathogenesis of RA and other inflammatory diseases [6]. The change law of energy metabolism related enzymes and the regulation pathway remains unclear

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call