Abstract
Successful commercialisation of wave energy technology inherently incorporates the concept of an array of wave energy converters (WECs). These devices, which constantly interact via hydrodynamic effects, require optimised control that can guarantee maximum energy extraction from incoming ocean waves while ensuring, at the same time, that any physical limitations associated with device and actuator systems are being consistently respected. This paper presents a moment-based energy-maximising optimal control framework for WECs arrays subject to state and input constraints. The authors develop a framework under which the objective function (and system variables) can be mapped to a finite-dimensional tractable quadratic program (QP), which can be efficiently solved using state-of-the-art solvers. Moreover, the authors show that this QP is always concave, i.e. existence and uniqueness of a globally optimal solution is guaranteed under this moment-based framework. The performance of the proposed strategy is demonstrated through a case study, where (state and input constrained) energy-maximisation for a WEC farm composed of CorPower-like WEC devices is considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.