Abstract

In this work, we investigate a probabilistic method for electricity price forecasting, which overcomes traditional ones. We start considering statistical methods for point forecast, comparing their performance in terms of efficiency, accuracy, and reliability, and we then exploit Neural Networks approaches to derive a hybrid model for probabilistic type forecasting. We show that our solution reaches the highest standard both in terms of efficiency and precision by testing its output on German electricity prices data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.