Abstract
Fuel cell vehicles are a reliable solution to address energy shortages. However, when the road conditions are complex, the system distributes power unevenly between fuel cells and lithium batteries, and cannot effectively absorb the energy generated by braking. In response to this issue, an adaptive control strategy is adopted to allocate the required power of the car to two types of batteries in real time. Fuzzy logic is used to continuously optimize the relevant parameters of the controller based on the vehicle state, and a multi-island genetic algorithm is used to optimize the control strategy, enhancing the global search ability of the control strategy and increasing the vehicle’s ability to absorb and reuse the energy generated by braking. The experiment findings denote that the optimized control strategy increases the remaining capacity of lithium batteries by an average of 1.67%, increases energy recovery by an average of 135 W, increases the overall energy recovery rate by an average of 2.8%, and reduces vehicle fuel consumption by an average of 0.24 L/100 Km. It can be concluded that the optimized adaptive fuzzy control strategy can reduce the probability of over-charging and discharging of lithium batteries and improve the battery life. Meanwhile, the optimized strategy can improve the energy reuse rate, reduce vehicle fuel consumption, lower usage costs. The optimized strategy provides a reference for subsequent research on energy management of fuel cell vehicles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.