Abstract

An energy management strategy, based on double deep Q-learning algorithm, is proposed for a dual-motor driven hybrid electric tracked-vehicle. Typical model framework of tracked-vehicle is established where the lateral dynamic can be taken into consideration. For the propose of optimizing the fuel consumption performance, a double deep Q-learning-based control structure is put forward. Compared to conventional deep Q-learning, the proposed strategy prevents training process falling into the overoptimistic estimate of policy value and highlights its significant advantages in terms of the iterative convergence rate and optimization performance. Unique observation states are selected as input variables of reinforcement learning algorithm in view of revealing tracked-vehicles characteristic. The conventional deep Q-learning and dynamic programming are also employed and compared with the proposed strategy for different driving schedules. Simulation results demonstrate the fuel economy of proposed methodology achieves 7.1% better than that of conventional deep Q learning-based strategy and reaches 93.2% level of Dynamic programing benchmark. Moreover, the designed algorithm has a good performance in battery SOC retention with different initial values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.