Abstract

This paper presents a method to derive optimised energy management strategies for a hydraulic hybrid wheel loader. Energy efficiency is a key aspect for the sustainability of off-road mobile machines. Energy management strategies for on-road hybrid vehicles cannot be directly applied to off-road hybrid machines. One significant reason is that there are added degrees of freedom with respect to how power can be recovered, exchanged and reused in the different functions, such as drivetrain or work functions. This results in more complex energy management strategies being derived. This paper presents an analysis and preliminary conclusions for a proposed method to derive optimised online energy management strategies for a hydraulic hybrid wheel loader. Dynamic programming is used to obtain optimal offline energy management strategies for a series of drive cycles. The results are used as examples to train a neural network. The trained neural network then implements the energy management strategy and is used to make optimised control decisions. Through simulation, the neural network’s ability to learn the dynamic programming decision-making process is shown, resulting in the machine operating with fuel consumption similar to that of the offline optimal energy management strategy. Aspects of simplicity to model these machines for dynamic programming optimisation, the data necessary to train the network, the training process, variables used to learn the dynamic programming decision-making process and the robustness of the network when facing unseen operational conditions are discussed. The paper demonstrates the simplicity of the method for taking into account variables that affect the control decisions, therefore achieving optimised solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call