Abstract

In integrated hydrogen energy utilization systems, due to the low efficiency of hydrogen/electricity conversion, coordination of energy management and efficient waste heat recovery is required to optimize performance. To address this challenge, this paper presents a comprehensive and sophisticated modeling and energy management strategy to enhance the off-grid energy utilization rate while prolonging the main components’ lifetime. The developed model incorporates multiphase flow and heat transport balance for electricity and heat production, enabling a highly accurate representation of real-world behaviors of the system. The proposed off-grid operation strategy is complemented by a designed heat recovery scheme, ensuring the use of energy resources and waste heat. In addition, the proposed energy management strategy monitors the real-time status of each subsystem, actively reducing the number of harmful start-stop cycles of the hydrogen production system, thereby mitigating short-term power impacts and delaying its aging. Specifically, the voltage degradation of the reduction cell is reduced from 4.67 mV to 4.48 mV, the energy utilization rate is increased from 47.6 % to 53.9 %, and the energy efficiency of fuel cells significantly increases from 53.6 % to 78.1 %.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.