Abstract
The sustainability of a clean energy transition for electric vehicle transportation is clearly affected by increased energy consumption cost, which is associated with large-scale electric vehicles (EVs) charging on a fossil-fuel dependent electricity grid. This places a potential threat on the safe operations and stability of the grid and increases the emissions of greenhouse gases (GHGs) from the power stations that generate the electricity. Furthermore, the uncontrolled large-scale integration of EVs charging on the grid will increase exponentially in the coming years. Because of this, new peaks on the grid will be generated due to the EV charging load variance, and a significant impact on the transformer limit and substation capacity violation will occur. To mitigate the significant impact of the high cost of energy consumption by large-scale EVs charging on the grid, and to reduce the emissions of GHGs, there is a need to provide a multi-level optimization approach that is robust and dynamic to solve the uncontrolled charging problem of large-scale integration of EVs to the grid. This paper investigates the grid energy consumption by EVs and reviews recent applications of EV charging controls and optimization approaches used for the energy management of large-scale EVs charging on the grid. Energy management in this context is not trivial. It implies that the objectives such as load shifting, peak shaving, and minimizing the high cost of electricity consumption with a stable grid operation can be achieved. In the context of this study, EVs charging on the grid includes both battery electric vehicles (BEVs), which have larger battery banks with a longer charging duration and higher energy consumption capacity, and plug-in hybrid electric vehicles (PHEVs) which have smaller battery capacities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.