Abstract
The solar powered energy harvesting sensor node is a key technology for Internet of Things (IoT), but currently it offers only a small amount of energy storage and is capable of harvesting only a trivial amount of energy. Therefore, new technology for managing the energy associated with this sensor node is required. In particular, it is important to manage the transmission interval because the level of energy consumption during data transmission is the highest in the sensor node. If the proper transmission interval is calculated, the sensor node can be used semi-permanently. In this study, the authors propose an energy prediction algorithm that uses the light intensity of fluorescent lamps in an indoor environment. The proposed algorithm can be used to accurately estimate the amount of energy that will be harvested by a solar panel using a weighted average for light intensity. Then, the optimal transmission interval is calculated using the amount of predicted harvested energy and residual energy. The results from the authors' experimental testbeds show that their algorithm's performance is better than the existing approaches. The energy prediction error of their algorithm is approximately 0.5%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.