Abstract

Decreasing production and rising prices of cars, especially those with electric drive, lead to longer use of cars with internal combustion engines. It can be assumed that in the future, more and more cars powered by such engines with high mileage and therefore high wear will be used. Engine wear leads to reduced efficiency and increased emissions. This paper analyzes the impact of wear of the piston–rings–cylinder system components on energy losses associated with gas leakage from the combustion chamber and friction of the rings against the cylinder liner in a car spark-ignition engine. A ring pack model was used for the analyses. The input data for the simulation were gained in measurements made on the engine test stand and measurements of the wear of the engine components used in the car. The energy losses associated with blow-by in an unworn engine ranged from 1.5% of the indicated work at high load to almost 5% at low load. In the engine after 300,000 km, these losses increased to 2.5% and 7.5%, respectively. Ring friction losses in an unworn engine ranged from 1.5% at high load to 9% at low load. The effect of wear on these losses was smaller. They increased by only 0.1% at high load and 1% at low load.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call