Abstract

We study the energy lost by a particle moving along the helical line in a static magnetic field due to Vavilov–Cherenkov radiation of volume and surface helicons. It is found that the energy losses related to excitation of volume helicons are equivalent to the energy losses of a magnetic moment created due to the charge rotation. The magnetic moment moves at a constant velocity along the magnetic field. It is shown that collisionless damping of volume helicons in plasmas is based on the Cherenkov radiation of magnetic moment. Radiation of surface helicons by a particle does not correspond to the energy losses of a moving magnetic moment. This is related to the fact that not only magnetic (H) waves but also electric (E) waves contribute to the excitation of surface helicons, which leads to an increase in the energy losses of a particle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.