Abstract
The problem of limit-cycle behavior of a 250,000-dwt tanker in full-load and ballast conditions under automatic steering control in calm water is addressed. The approach presented involves digital computer time domain simulation studies of the yaw-sway-surge-rudder coupled motions of the ship emanating from nonlinearities in the steering system. It is shown that the amplitude of limit cycle in yaw remains, in general, within acceptable limits for open-seas navigation for a fairly wide range of autopilot bandwidths. Propulsion losses resulting from limit-cycle behavior in calm water are shown also to be, in general, small relative to the losses experienced in some conditions in waves. It is shown, however, that whereas increasing bandwidth reduces limit-cycle behavior in calm water, it can be expected to increase propulsion losses in heavy weather. The problem this poses in. design of steering gear controls and autopilot for this type of ship is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.