Abstract

The theory of rate of loss of energy of non-equilibrium electrons due to inelastic interaction with the intravalley acoustic phonons in a nano-dimensional semiconductor wire has been developed under the condition of low lattice temperature, when the approximations of the well known traditional theory are not valid. Numerical results are obtained for narrow-channel GaAs-GaAlAs wires structures. On comparison with other available results it is revealed that the finite energy of the intravalley acoustic phonons and, the use of the full form of the phonon distribution without truncation to the equipartition law, produce significant changes in the energy loss characteristics at low temperatures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call