Abstract

Implicit assumptions regarding continuity in energy-loss calculations in general relativity are examined. The Arnowitt-Deser-Misner energy integral is treated in a new manner as a universal vehicle for energy loss. Two explicit examples are given: the electric dipole radiation flux is computed using general relativity as well as the gravitational-radiation flux from a linear mass quadrupole oscillator. In this approach, the latter is seen as a nonlinear problem in the sense that the lower-order metric serves as a source for the required order metric as computed within the wave front. Logarithmic terms which threaten to induce divergences, as has been found in other works, are averted by functions of integration which are required to sustain the gauge conditions and finally yield the usual fluxes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.