Abstract
The conventional method cannot explicitly confirm the location and type of the energy loss, therefore this paper employs the entropy production theory to systematically analyze the category, magnitude and location of hydraulic loss under different blade thickness distribution. Based on the analysis, the turbulent entropy and viscosity entropy produced by the separation of boundary layer at the trialing edge are major factors leading to the hydraulic loss. In addition, the separation of the boundary layer can not only cause the energy loss, but also block the passage of the impeller and reduce the expelling coefficient of the blade. Therefore, the hydraulic performance of the blades with increment thickness distribution is obviously better than the decrement one. Further, the flow rate has different influence on the three types of entropy production. Meanwhile, the pressure pulsation on the working surface was investigated. It was concluded that with flow rates increasing, the amplitude of pressure pulsation firstly decreases and then smoothly improves, and reaches the minimum under design flow rate. Finally, the optimal blade was obtained, and the relevant hydraulic performance test was performed to benchmark the simulation result. This research can provide the theoretical reference for designing the reasonable thickness distribution of the blades.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.