Abstract

We study the effects of Rashba spin-orbit coupling on two-dimensional Rydberg exciton systems. Using analytical and numerical arguments we demonstrate that this coupling considerably modifies the wave functions and leads to a level repulsion that results in a deviation from the Poissonian statistics of the adjacent level distance distribution. This signifies the crossover to non-integrability of the system and hints on the possibility of quantum chaos emerging. Such a behavior strongly differs from the classical realization, where spin-orbit coupling produces highly entangled, chaotic electron trajectories in an exciton. We also calculate the oscillator strengths and show that randomization appears in the transitions between states with different total momenta.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call