Abstract
We present an advanced method to tailor the optical and electrical properties of semiconductor quantum dot structures. By embedding vertically stacked quantum dots in a two-dimensional superlattice, the advantages of self-organized growth and of band structure engineering can be combined. The transition energies between the dot levels and the extended states of the superlattice can be adjusted by the period of the superlattice. We apply this scheme for photodetectors made of InAs quantum dots embedded in an AlAs/GaAs superlattice. The dark current of these devices is reduced by more than one order of magnitude compared to the devices without a superlattice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.