Abstract

Motivated by environmental reasons, In2S3 is a promising candidate for a Cd-free buffer layer in Cu(In, Ga)(S, Se)(2) (CIGSSe)-based thin-film solar cells. For an impactful optimization of the In-2 S-3 alternative buffer layer, however, a comprehensive knowledge of its electronic properties across the absorber-buffer interface is of foremost importance. In this respect, finding a favorable band offset between the absorber and the buffer layers can effectively reduce the carrier recombination at the interface and improve open-circuit voltage and fill factor, leading to higher conversion efficiencies. In this study, we investigate the band alignment between the most common CIGSSe-based absorber compounds and In2S3. Furthermore, we consider two chemically modified indium sulfide layers, NaIn(5)S(8 )and CuIn5S8, and we discuss how the formation of these secondary phases influences band discontinuity across the interface. Our analysis is based on density functional theory calculations using hybrid functionals. The results suggest that Ga-based absorbers form a destructive clifflike conduction-band offset (CBO) with both pure and chemically modified buffer systems. For In-based absorbers, however, if the absorber layer is Cu-poor at the surface, a modest favorable spikelike CBO arises with NaIn5S8 and CuIn5S8.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call