Abstract

We calculate transformation pathways between fullerene and octahedral carbon clusters and between a buckyball and its bowl-shaped isomer. The energies and gradients are provided by efficient tight-binding potentials, which are interfaced to our Energy Landscape exploration software. From the global energy landscape, we extract the mechanistic and kinetic parameters as a function of temperature, and compare our results to selected density functional theory (DFT) (PBE/cc-pVTZ) benchmarks. Infrared spectra are calculated to provide data for experimental identification of the clusters and differentiation of their isomers. Our results suggest that the formation of buckyballs from a buckybowl will be suppressed at elevated temperatures (above around 5250 K) due to entropic effects, which may provide useful insight into the detection of cosmic fullerenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.