Abstract

The short-range nature of the repulsive Weeks–Chandler–Anderson (WCA) potential can create free particles/rattlers in a condensed system. The presence of rattlers complicates the analysis of the energy landscape due to extra zero-frequency normal modes. By employing a long-range Gaussian tail modification, we remove the rattlers without changing the structure and the dynamics of the system, and successfully describe the potential energy landscape in terms of minima and transition states. This coarse-grained description of the landscape and the dynamical properties of the modified potential exhibit characteristic signatures of glass-forming liquids. However, we show that despite having qualitatively similar behaviour, the modified WCA potential is less frustrated compared to its attractive counterpart.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call