Abstract

Positive and negative deviations from the prediction of Raoult's Law on the composition dependence of a property of binary mixtures are often explained in terms of structure formation and structure breakage, respectively, upon mixing. However, a detailed theoretical description of these ideas seems to be lacking in the literature. Here we present the energy landscape view of nonideality of the viscosity of the binary mixture using two different models, one for structure former and the other for structure breaker. For both the models, the average inherent structure energy shows an inverse correlation with the viscosity. The inherent structures of the structure former indicate that there is a considerable enhancement of short range order due to stronger attractive interaction between the two constituent species. On the other hand, for the structure breaker, there is no such enhancement of short range order due to weaker interaction between the two constituent species. We find the inherent structures of the structure breaker to be phase separated in many cases where the parent phase is homogeneous. When the configurational entropy of the parent liquid is computed for the two model systems, we find that the configurational entropy also shows an inverse correlation with the viscosity in both the cases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call