Abstract

We have investigated free energy landscape [MM/PBSA + normal modes entropy] of permutations in the G peptide (41-56) from the protein G B1 domain by studying six isomers corresponding to moving the hydrophobic cluster along the beta-strands (toward the turn: T1, AGEWTYDDKTFTVTET; T2, GEDTWDYATFTVTKTE; T3, GEDDWTYATFTVTKTE; toward the end: E1, WTYDDAGETKTFTVT; E2, WEYTGDDATKTETFTV; E3, WTYEGDDATKTETFTV). The free energy terms include molecular mechanics energy, Poisson-Boltzmann electrostatic solvation energy, surface area solvation energy, and conformational entropy estimated by using normal mode analysis. From the wild type to T1, then T3, and finally T2, we see a progressively changing energy landscape, toward a less stable beta-hairpin structure. Moving the hydrophobic cluster outside toward the end region causes a greater change in the energy landscape. alpha-Helical instead of a beta-hairpin structure was the most stable form for the E2 isomer. However, no matter how much the sequence changes, for all variants studied, ideal "native" beta-hairpin topologies remain as minima (regardless of whether global or local) in the energy landscape. In general, we find that the energy landscape is dependent on the hydrophobic cluster topology and on the sequence. Our present study indicates that the key is the relative conformational energies of the different conformations. Changes in the sequence strongly modulate the relative stabilities of topologically similar regions in the energy landscape, rather than redefine the topology space. This finding is consistent with a population redistribution in the process of protein folding. The limited variation of topological space, compared with the number of possible sequence changes, may relate to the observation that the number of known protein folds are far less than the sequential allowance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.